Scompenso Cardiaco Acuto ed Insufficienza Renale: L'importanza dei biomarkers per predire l'evoluzione

GREAT NETWORK IN THE WORLD

Salvatore Di Somma, MD, PhD

Professor of Internal Medicine Director Postgraduate School of Emergency Medicine Faculty od Medicine and Psicology, Sapienza University of Rome Italy Visiting Professor UCSD San Diego USA Expert Professor University of Lund Sweden President GREAT –Network Italy Board Member Acute Heart Failure ACCA European Society Cardiology

SCOMPENSO CARDIACO

dallo stato dell'arte alle prospettive future

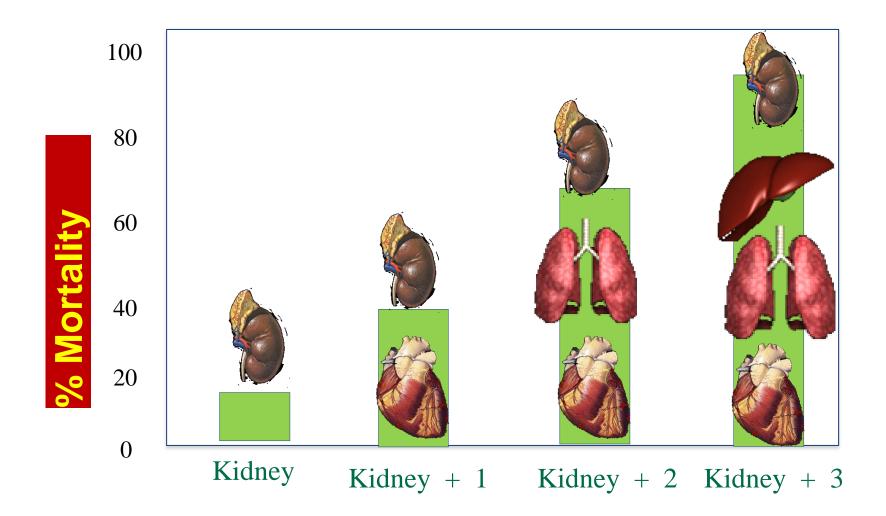
Disclosures

Consultant:

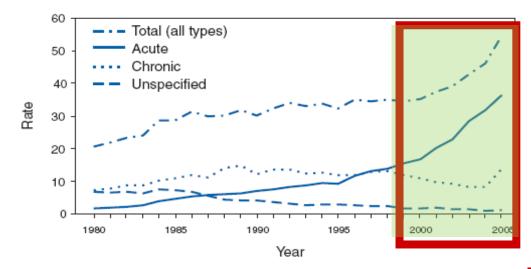
- Novartis;
- Alere;
- Abbott;
- Adrenomed;
- Sphingotec;
- Ortho Clinical Diagnostics;
- NI Medical

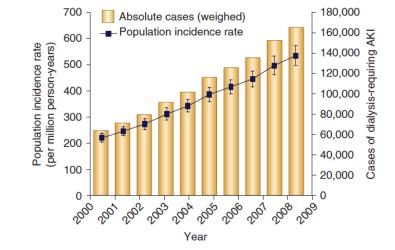
Research Grants:

GE; Sphingotec; Novartis; Biomerieux; Ortho Clinical Diagnostics



Number of Failing Organs for any acute disease





Increasing Frequency of Hospitalizations and Need for Dialysis because of Kidney Disease

FIGURE 2. Age-adjusted hospitalization rates* for kidney disease,[†] by type of kidney failure — National Hospital Discharge Survey, United States, 1980–2005

* Per 10,000 population.

Based on International Classification of Diseases, Ninth Revision, *Clinical Modification* codes 580–589, which include acute kidney disease, acute renal failure, end-stage renal disease, chronic kidney failure, and other kidney diseases.

Morb Mortal Wkly Rep, 57: 309-12, 2008.

Population incidence of dialysisrequiring AKI

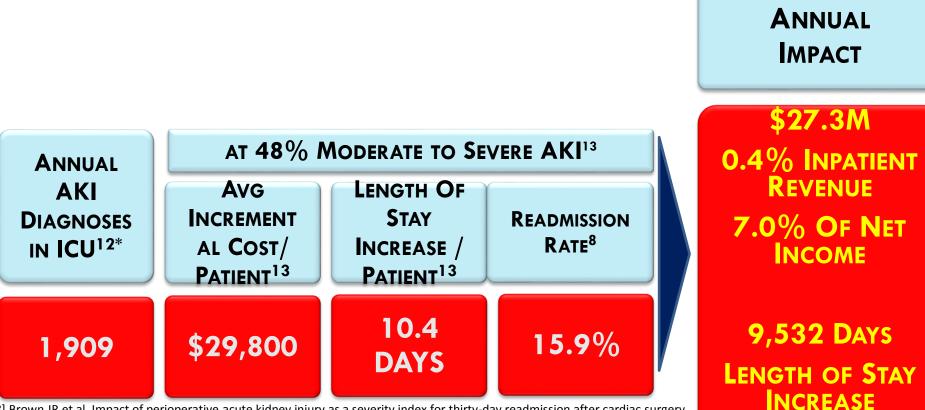
Siew ED et al. Kidney international 2015.

AKI: Epidemiology

- ✓ Over the past two decades, the increased availability of electronic health records and large prospective cohorts of patients with AKI have facilitated the study of this disease in different settings;
- ✓ Rapid increases in the incidence of AKI have been reported, highlighting a growing contribution to the public health burden of advanced kidney disease.

AKI (KDIGO definition) is estimated to occurs in:
18% of general hospitalizations and
up to 50% of ICU cases worldwide;


Bienholz A et al. From the nephrologist's point of view: diversity of causes and clinical features of acute kidney injury. Clinical Kidney Journal 2015. Siew ED et al. The growth of acute kidney injury: a rising tide or just closer attention to details? Kidney international 2015.



Why is AKI Important to Society

Drives Up Length of Stay And Hospital Costs

146 PATIENTS

READMITTED

LUND

INIVERSITY

[8] Brown JR et al. Impact of perioperative acute kidney injury as a severity index for thirty-day readmission after cardiac surgery. Ann Thorac Surg. 2014;97(1):111-7

[11] Massicottee-Azarniouch, Magder S, Goldberg P, Alam A. Acute Kidney Injury in the Intensive Care Unit: Risk Factors and Outcomes of Physician Recognition Compared with KDIGO Classification. Poster presented at: Society of Critical Care Medicine; February 2016; Orlando, FL.

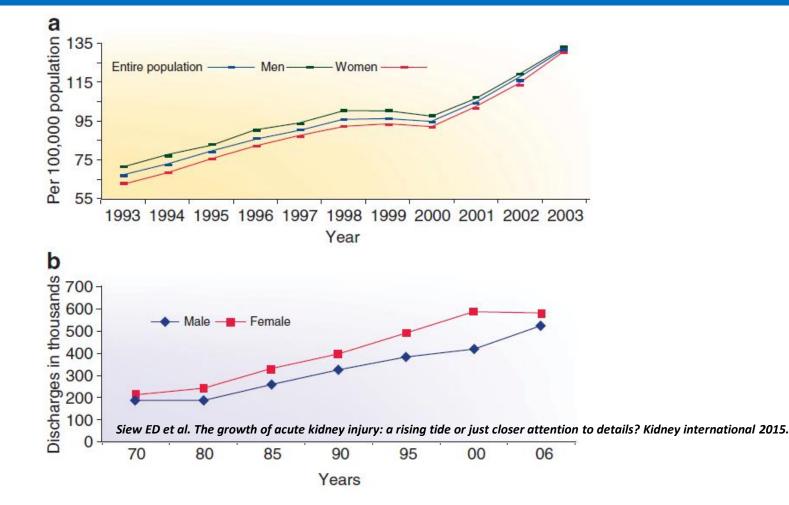
[12] American Hospital Directory Database, accessed Dec 2016 on 7,052 hospitals, data on file

*AKI diagnoses from AHD Database adjusted for diagnoses in ICU using assumptions from AHA Database (ICU beds per hospital bed), Wunsch et al. (ICU LOS, % cardiovascular/respiratory compromised), and Hobson et al. (% moderate/severe AKI). [13] Hobson CE, Ozrazgat-Baslanti T, Kuxhausen A, et. al. Cost and Mortality Associated With Postoperative Acute Kidney Injury

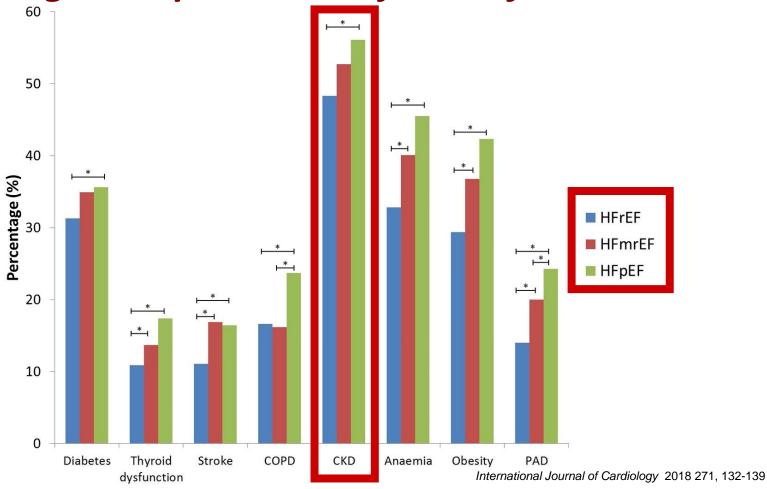
Acute conditions associated with AKI

Exposures	Susceptibilities
• Sepsis	 Dehydration and volume depletion
 Critical illness 	 Advanced age
 Circulatory shock 	 Female gender
• Burns	Black race
• Trauma	• CKD
Cardiac surgery (especially with	 Chronic diseases (heart,
cardio-pulmonary bypass)	lung, liver)
 Major non-cardiac surgery 	Diabetes mellitus
Nephrotoxic drugs	• Cancer
 Radiocontrast agents 	Anaemia
 Poisonous plants and animals 	•
Acute Heart Failure	Both Volume Depletion and or Congestion

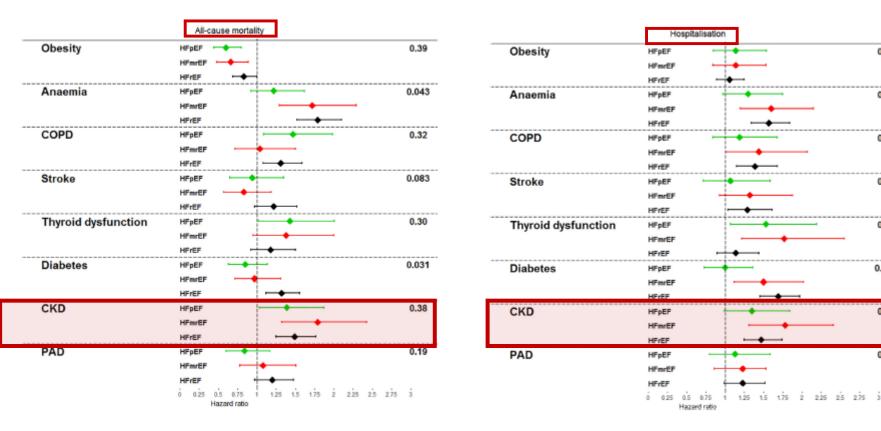
Bienholz A et al. From the nephrologist's point of view: diversity of causes and clinical features of acute kidney injury. Clinical Kidney Journal 2015. Siew DE et al. The inexorable rise of AKI: can we bend the growth curve? J Am Soc Nephrol 2013.



Temporal trends in Sepsis (a) and Heart Failure (b) hospitalizations in US



Comorbidities in heart failure with reduced, midrange and preserved ejection fraction



Kidney Disease and Outcome in Heart Failure

International Journal of Cardiology 2018 271, 132-139

0.86

0.50

0.69

0.67

0.10

0.011

0.43

0.91

Clinical Practice/Education

European Heart Journal: Acute Cardiovascular Care

European Society of Cardiology - Acute Cardiovascular Care Association position paper on safe discharge of acute heart failure patients from the emergency department

Öscar Miró¹, Frank W Peacock², John J McMurray³, Héctor Bueno⁴, Michael Christ⁵, Alan S Maisel⁶, Louise Cullen⁷, Martin R Cowie⁸, Salvatore Di Somma⁹, Francisco J Martin Sánchez¹⁰, Elke Platz¹¹, Josep Masip¹², Uwe Zeymer¹³, Christiaan Vrints¹⁴, Susanna Price¹⁵, Alexander Mebazaa¹⁶ and Christian Mueller¹⁷ for the Acute Heart Failure Study Group of the ESC Acute Cardiovascular Care Association

Table 2. Variables included in the Emergency Heart Failure Mortality Risk Grade Model formulated by Lee et al.⁴¹ Score calculation for a particular patient can be done through a web calculator (https://ehmrg.ices.on.ca/#/) which allocates patient in low (deciles I to 4), medium (deciles 5 to 7) or high (deciles 8 to 10) risk category.

Variableª	Unit of measurement				
Age	Continuous in years				
Transported by EMS	Categorical				
Systolic blood pressure	Continuous in mmHg (max = 160 mmHg)				
Heart rate	Continuous in beats/min (min = 80, max = 120 beats/min)				
Oxygen saturation	Continuous as $\%$ (max = 92%)				
Creatinine	Continuous as mg/dl				
Potassium	Categorical:				
	4.0 to 4.5 mmol/l				
	≥ 4.6 mmol/l				
	≤ 3.9 mmol/l				
Troponin	Categorical				
Active cancer	Categorical				
Metolazone at home	Categorical				

Cardiorenal Syndrome(CRS)

"a pathophysiological disorder of the heart and kidneys, in which acute or chronic dysfunction of one organ may induce acute or chronic dysfunction to the other."

Although cardiorenal syndrome was usually referred to as acute kidney dysfunction following acute cardiac disease, it is now clearly established that impaired kidney function can have an adverse impact on cardiac function.

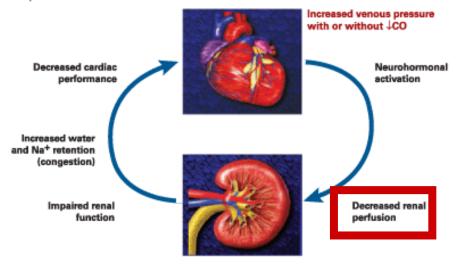
Ronco C et al. Adv Chronic Kidney Dis.2018 Sep;25(5):382-390.

Туре	Denomination	Description	Example
1	Acute cardiorenal	Heart failure leading to AKI	Acute coronary syndrome leading to acute heart and kidney failure
2	Chronic cardiorenal	Chronic heart failure leading to kidney failure	Chronic heart failure
3	Acute nephrocardiac	AKI leading to acute heart failure	Uremic cardiomyopathy AKI related
4	Chronic nephrocardiac	CKD leading to heart failure	Left ventricular hypertrophy and diastolic heart failure due to kidney failure
5	Secondary	Systemic disease leading to heart and kidney failure	Sepsis, vasculitis, diabetes mellitus

Table 1. Classification of CRS

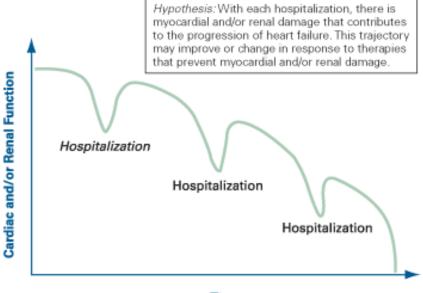
Cardiorenal Syndrome: Review

Ronco C Kidney Dis 2016;2:151–163



CRS Type 1:Acute CRS

Figure 1. Cardiac/Renal Syndrome^{*} in Acute Heart Failure Syndrome⁷



Most patients do not have low cardiac output.

Increasing blood urea nitrogen, in the presence of high filling pressures (edema) often related to high doses of loop diuretics.

Modified from Abraham WT, Schrier RW. Adv Intern Med. 1994;39:23-47.

■ Figure 2. Acute Heart Failure Syndrome and Heart Failure Progression as Related to Cardiac/Renal Function¹⁰

Time

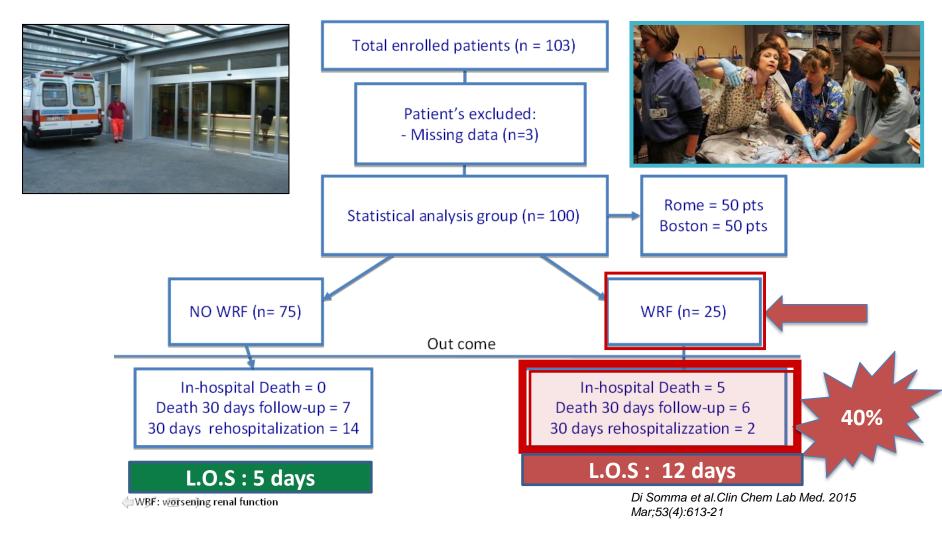
Am J Manag Care. 2008 Dec;14(12 Suppl Managed):S273-86

WRF and poor outcome in Heart Failure

Study or	WRF		No WRF		weight, % Odds ratio		year			
subgroup	events	total	events	total		M-H, random (95% CI)		M-H, random (95% CI)		
Krumholz	119	469	235	1,212	7.1	1.41 (1.10, 1.82)	2000		_	
Smith	35	185	27	227	5.0	1.73 (1.00, 2.98)	2003			
Forman	19	273	7	731	3.1	7.74 (3.21, 18.62)	2004			
Akhter	45	119	68	361	5.6	2.62 (1.66, 4.13)	2004			
De Silva	44	161	219	1,055	6.2	1.44 (0.98, 2.09)	2005			
Jose	58	223	316	1,631	6.6	1.46 (1.06, 2.02)	2006			
Khan	628	2,060	879	4,475	7.8	1.79 (1.59, 2.02)	2006			
Cowie	26	98	35	201	4.8	1.71 (0.96, 3.05)	2006		+	
Owan	1,095	1,419	3,215	4,633	7.7	1.49 (1.30, 1.71)	2006			
Cioffi	11	16	12	63	2.0	9.35 (2.73, 31.99)	2007			
Chittineni	10	107	17	402	3.4	2.33 (1.04, 5.26)	2007			
Iglesias	47	221	49	461	5.8	2.27 (1.47, 3.52)	2008			
Hata	29	275	1	101	0.9	11.79 (1.58, 87.72)	2010			
Kociol	1,261	3,581	5,601	16,482	7.9	1.06 (0.98, 1.14)	2010		· ·	
Lassus	18	46	67	246	4.3	1.72 (0.89, 3.31)	2010		+	
Herout	25	252	16	515	4.3	3.43 (1.80, 6.56)	2010			
Damman	30	106	76	894	5.4	4.25 (2.62, 6.89)	2010			
Belziti	12	46	25	154	3.5	1.82 (0.83, 3.99)	2010		+	
Breidthardt	49	136	171	521	6.1	1.15 (0.78, 1.71)	2011			
Voors	11	68	7	157	2.6	4.14 (1.53, 11.19)	2011			
Total (95% CI)		9,861		34,522	100	1.99 (1.63, 2.42)				
Total events	3,572	5,001	11,043	54,562	200	2.55 (2.00, 2.12)				
Heterogeneity: $\tau^2 = 0.13$, $\chi^2 = 146.49$, d.f. = 19 (p < 0.00001), I ² = 87%						0.	5 0.2	1 5 20		
Test for overal					0.00001,1			No WRF	WRF	

NGAL: Ready for Routine Clinical Use?

Blood Purif 2014;37:271-285 DOI: 10.1159/000360689



CRS Type 1: outcome

Importance of early therapies for AHF as consequence of prompt diagnosis

- In 46,599 patients with ADHF (ADHERE)
- *a delay in Treatment* was associated with:

- 250% ↑ in acute mortality;
- 150% ↑ in Hospital length of stay

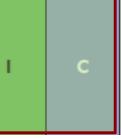
W.F. Peacock, S. Di Somma et al. Congest Heart Fail. 2008

ESC GUIDELINES

2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)

Developed with the special contribution of the Heart Failure Association (HFA) of the ESC

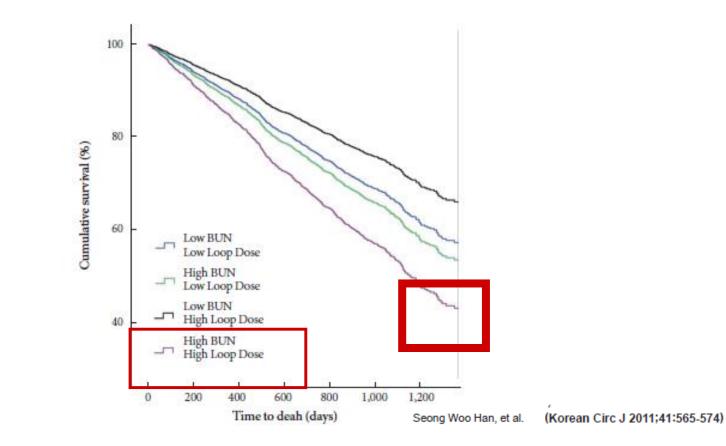

Recommendations for the management of patients with acute heart failure: pharmacotherapy

Recommendations	Class ^a	Level ^b	Ref
Diuretics			
Intravenous loop diuretics are recommended for all patients with AHF admitted with signs/symptoms of fluid overload to improve symptoms. It is recommended to regularly monitor symptoms, urine output, renal function and electrolytes during use of i.v. diuretics.	T	с	

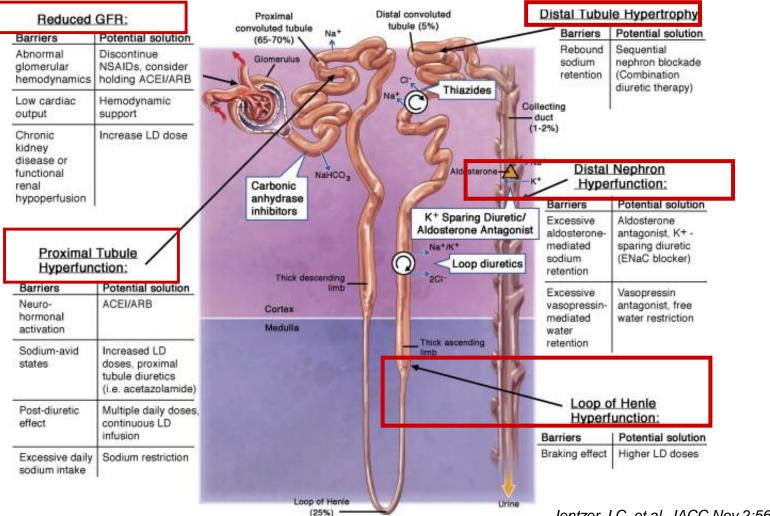
Recommendations regarding monitoring of clinical

status of patients hospitalized due to acute heart failure

Frequent, often daily,measurement of renal function (blood urea, creatinine) and electrolytes (potassium, sodium) during i.v. therapy and when renin-angiotensinaldosterone system antagonists are initiated is recommended.

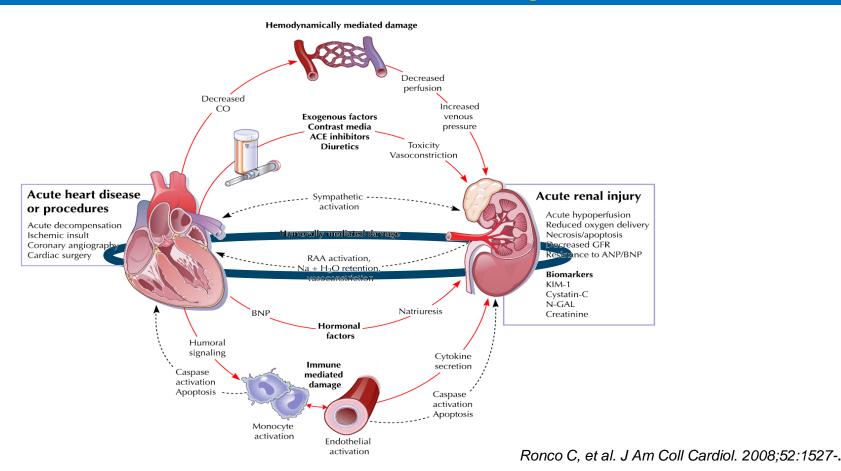


Diuretic dosage and kidney function



Diuretic Resistance

Jentzer J.C. et al JACC Nov 2;56(19):1527-34. 2010



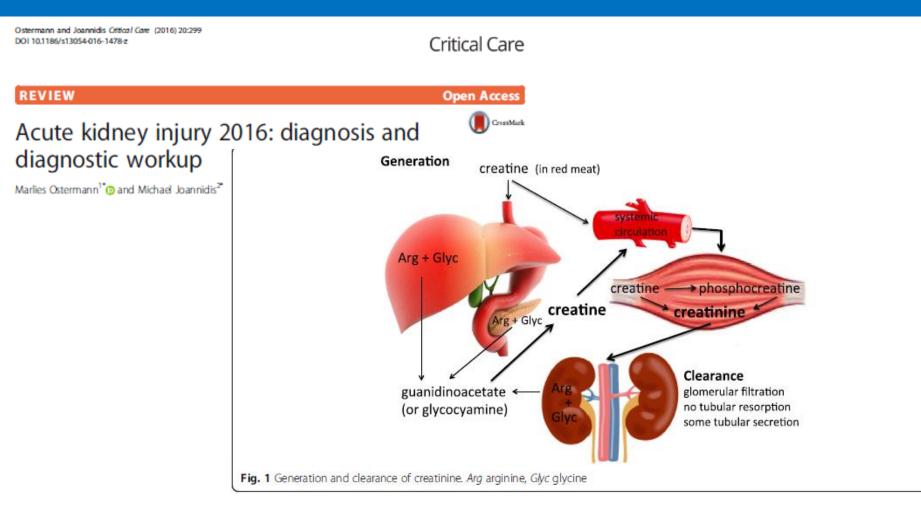
Type 1 Cardiorenal Syndrome: Biomarkers Utility

AKI:Diagnosis

Criteria			RIFLE ²⁵			AKIN ²⁶			KDIGO ^{27,92}	
Date of release			2004	•		2007	•		2012	
Baseline Time interval		calculate a serum creatinine using an eGFR of 75 ml/min/1.73 m ² using the MDRD equation Diagnosis and staging: within 1–7 days and				48-h window Not specifically defined. If not available, use serum creatinine during hospitalization, or car SCr using MDRD assuming baseline eGFR 75 min/1.73 m ² when there is no evidence of C Diagnosis: within 48 h Diagnosis: within 48 h 0.3 mq/dl (26.5 µmol/l) within 48 h			alculate 5 ml/ CKD	
Criteria			Creatinine	Urine output		Creatinine (u criteria			Creatinine (urine out criteria same)	put
Stage R	Risk		Cr 1.5–1.9 times baseline R decrease >25%	<0.5 ml/kg/h for 6–12 h	1	Increased SCr base	line	1	Increased SCr 1.5–1.9 t baseline (7 days) <i>OR</i>	imes
F	njury -ailure .oss	de 3.0 times l ≥ 4.0 mg/d acute rise of Persistent A	mes baseline or GFR screase >50% baseline, GFR decrease >75%, or SCr II (354 μ mol/I) with an f \ge 0.5 mg/dI (44 μ mol/I) ARF = complete loss of tion (need for dialysis) >4 weeks	<0.5 ml/kg/h for ≥12h <0.3 ml/kg/h for ≥24 h OR Anuria for ≥12 h	2	≥ 0.3 mg/dl (; incre Same as Rl eGFR c Same as Rl eGFR criteri (1) Addition of 0. change in SCr to nostic se (2) eGFR crite (3) 48-h time wii acuity (also allow baseline (4) Exclusion of fl gories as diag	fferences: a removed fferences: a my classification fferences: a my classification b increase diag- nsitivity ria removed ndow to ensure ws for inpatient values) Loss/ESKD cate-	2 3	≥ 0.3 mg/dl (≥ 26.5 µm increase (48 h) same as AKIN 3.0 times baseline OR Increase in SCr ≥ 4.0 n (354 µmol/l) OR Initiation of renal replac therapy OR For <18 years, decrea eGFR to <35 ml/min 1.73 m ² Notable difference (1) Time frame difference (2) 0.5 mg/dl increase for with SCr ≥ 4.0 mg/ (354 µmol/l) no long required if minimum threshold met (3) Inclusion of eGFR crit	, ement se in per s: ses for ive tinine r those dl ger AKI
E	SKD		age kidney disease >3 months)						children	

Bienholz A et al. From the nephrologist's point of view: diversity of causes and clinical features of acute kidney injury. Clinical Kidney

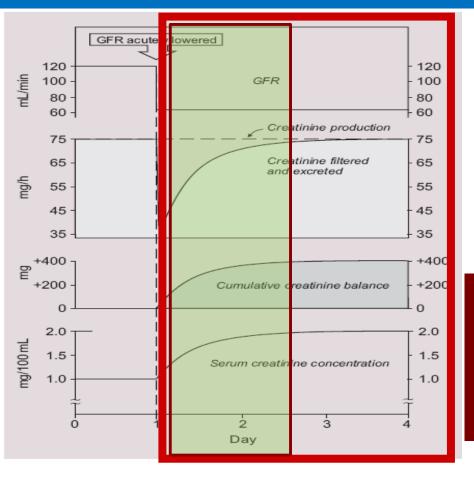
Journal 2015.

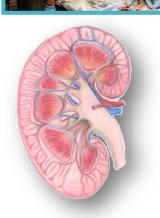


Creatinine caveats

Caveats in using BNP

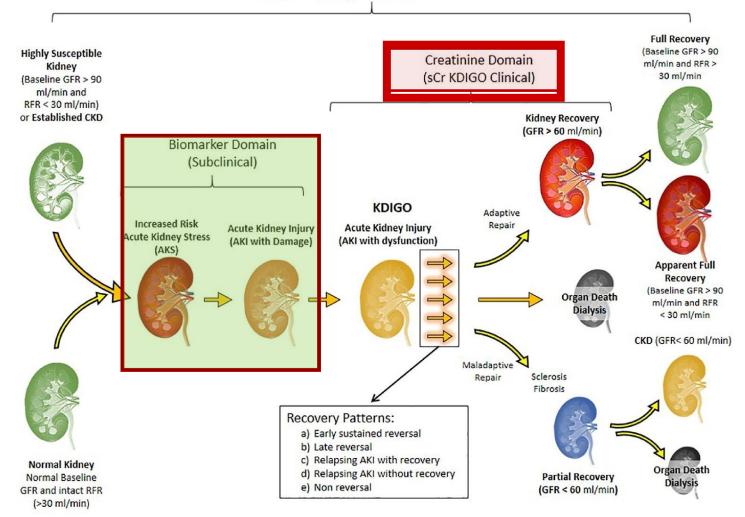
Curr Emerg Hosp Med Rep DOI 10.1007/s40138-013-0009-3 HEART FAILURE (F PEACOCK, SECTION EDITOR)	Table 1 Factors affecting na — HF along with "grey-zone"	natriuretic peptide levels in patients with values in diagnosing HF			
HEART FAILURE (F FEACUER, SECTION EDITOR)		BNP	NT-proBNP		
Biomarkers for Diagnosis and Prognosis of Acute Heart Failure	Factors affecting NP levels				
Rajiv Choudhary · Salvatore Di Somma ·	Pulmonary disease ^a	↑	↑		
Alan S. Maisel	Renal disease ^b	↑	↑		
	Diastolic dysfunction	Ţ	Ť		
	Obesity ^d	Ļ	Ļ		
	Flash pulmonary edema ^e	\downarrow	Ļ		
	Other causes ^f	Ļ	Ļ		
	Diagnostic cut-off				
	HF present (pg/ml)	>400	<50 years: >450		
			50-75 years: >900		
			>75 years: >1800		
	HF absent (pg/ml)	<100	<75 years: 125		
			>75 years: 450		
	Grey-zone (pg/ml)	100-400	<50 years: 300-450		
			50-75 years: 300-900		
			>75 years: 300-1800		





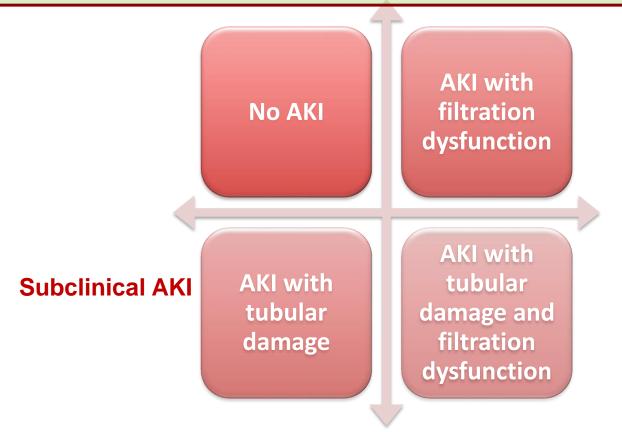
Importance of Time in Acute Kidney Injury: we need AKI biomarkers !

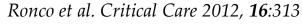
In ACS Time is Myocardium !! And we have troponin... IN AKI Time is important to stop the progression of nephrons death We need Kidney troponin....



Acute Kidney Disease

Seminars in Nephrology 2019 39, 31-40DOI: (10.1016/j.semnephrol.2018.10.003)

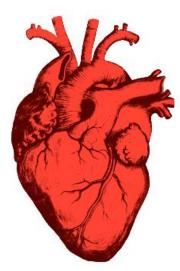




Entities of acute kidney injury syndrome

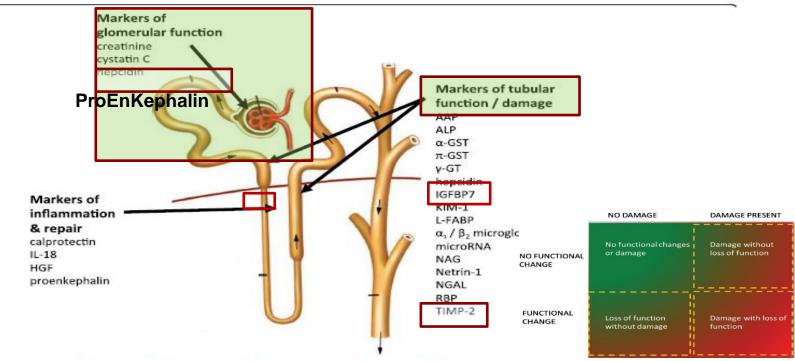
The most common and expensive kidney disease in hospital;

- AKI implies injury or damage but not necessarily dysfunction
- Functional criteria and damage criteria: new domain of AKI diagnosis



Biomarkers: Function x Lesion

- Function marker Natriuretic Peptides.
- <u>Lesion marker</u> Hs troponins
- Function marker creatinine and urine output
 - Lesion marker TIMP-2 & IGFBP7


A lesion marker does not necessarily predict loss of function – nor should it !!!! But a lesion marker STILL SHOULD GUIDE PATIENT MANAGEMENT!!!!!

Functional and Damage Kidney Biomarkers

Fig. 2 Biomarkers of AKL *α*-*GST* α glutathione S-transferase, AAP alanine aminopeptidase, ALP alkaline phosphatase, γ-GT γ-glutamyl transpeptidase, *n GST* n glutathione S-transferase, *HGF* hepatocyte growth fator, *IGFBP-7* insulin like growth factor binding protein 7, *IL-18* interleukin 18, *KIM-1* kidney injury molecule-1, *L-FAB* liver fatty acid-binding protein, *NAG* N-acetyl-β-D-glucosaminidase, *NGAL* neutrophil gelatinase-associated lipocalin, *RBP* retinol binding protein, *TIMP2* tissue inhibitor metalloproteinase 2

Ostermann and Joannidis Critical Care (2016) 20:299 DOI 10.1186/s13054-016-1478-z

AKINESIS Study

OBJECTIVES:

This study sought to determine whether NGAL is superior to creatinine for prediction and/or prognosis of WRF in hospitalized patients with AHF treated with intravenous diuretic agents.

METHODS:

This was a multicenter, prospective cohort study enrolling patients presenting with AHF requiring intravenous diuretic agents. The primary outcome was whether plasma NGAL could predict the development of WRF, defined as a sustained increase in plasma creatinine of 0.5 mg/dl or ≥50% above first value or initiation of acute renal-replacement therapy, within the first 5 days of hospitalization. The main secondary outcome was in-hospital adverse events.

RESULTS:

We enrolled 927 subjects (mean age, 68.5 years; 62% men). The primary outcome occurred in 72 subjects (7.8%). Peak NGAL was more predictive than the first NGAL, but neither added significant diagnostic utility over the first creatinine (areas under the curve: 0.656, 0.647, and 0.652, respectively). There were 235 adverse events in 144 subjects. The first NGAL was a better predictor than peak NGAL, but similar to the first creatinine (areas under the curve: 0.691, 0.653, and 0.686, respectively). In a post hoc analysis of subjects with an estimated glomerular filtration rate <60 ml/min/1.73 m(2), a first NGAL <150 ng/ml indicated a low likelihood of adverse events.

CONCLUSIONS:

Plasma NGAL was not superior to creatinine for the prediction of WRF or adverse in-hospital outcomes. The use of plasma NGAL to diagnose acute kidney injury in AHF cannot be recommended at this time.

A.Maisel et al.J ACC 2016

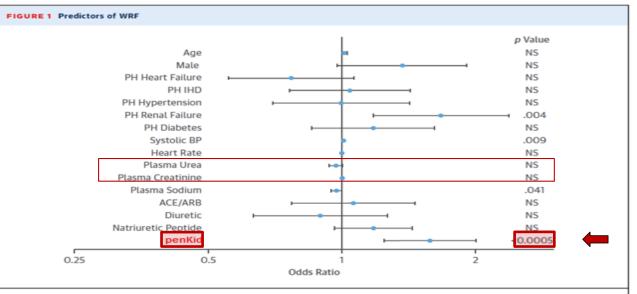
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Proenkephalin, Renal Dysfunction, and Prognosis in Patients With Acute Heart Failure

A GREAT Network Study

Leong L. Ng, MD,^{a,b} Iain B. Squire, MD,^{a,b} Donald J.L. Jones, PHD,^c Thong Huy Cao, MD, PHD,^{a,b} Daniel C.S. Chan, BMEDSC, BM BS,^{a,b} Jatinderpal K. Sandhu, MPHIL,^{a,b} Paulene A. Quinn, MPHIL,^{a,b} Joan E. Davies, PHD,^{a,b} Joachim Struck, PHD,^d Oliver Hartmann, PHD,^d Andreas Bergmann, PHD,^d Alexandre Mebazaa, MD, PHD,^e Etienne Gayat, PHD,^e Mattia Arrigo, MD,^e Eiichi Akiyama, MD,^e Zaid Sabti, MD,^f Jens Lohrmann, MD,^f Raphael Twerenbold, MD,^f Thomas Herrmann, MD,^f Carmela Schumacher, MSc,^f Nikola Kozhuharov, MD,^f Christian Mueller, MD,^f on behalf of the GREAT Network

CONCLUSIONS PENK levels reflect cardiorenal status in acute HF and are prognostic for worsening renal function and in-hospital mortality as well as mortality during follow-up. (J Am Coll Cardiol 2017;69:56–69) © 2017 by the American College of Cardiology Foundation.



ProEnkepahlin (penKid) is the strongest predictor of WRF in Acute Heart Failure patients

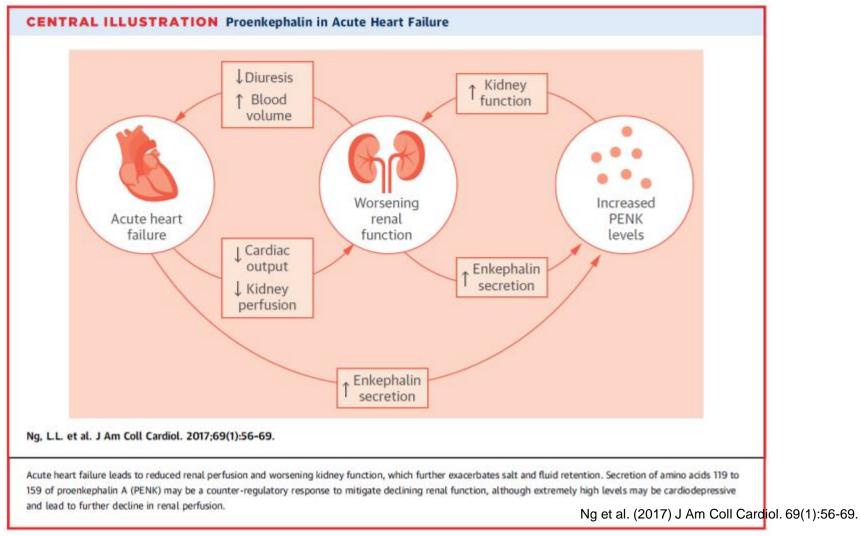
Forest plot of a multivable analysis

GREAT AHF Study n = 1,908

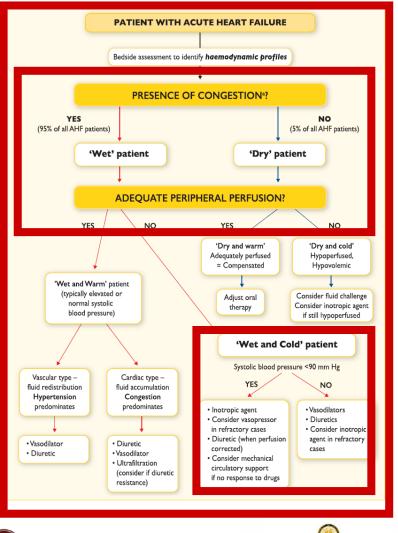
- Multicentric, observational study in patients with AHF presenting to the ED of participating university hospitals in 3 countries
- 264 patients developed WRF (rise in plasma creatinine of >26.5 mmol/l or 50% higher than the admission value)

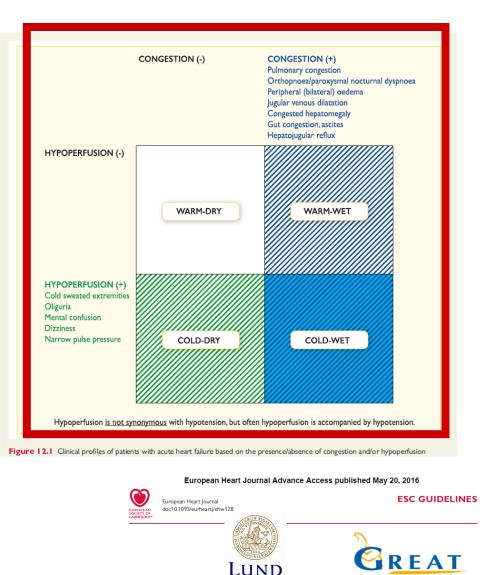
Forest plots of a multivariable analysis shows odds ratio for clinical variables, natriuretic peptides, and amino acids 119 to 159 of proenkephalin A for prediction of worsening renal function (WRF) during initial hospitalization. ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; BP = blood pressure; IHD = ischemic heart disease; PENK = proenkephalin A assay; PH = past history; NS = not significant.

Ng et al. (2017) J Am Coll Cardiol. 69(1):56-69.

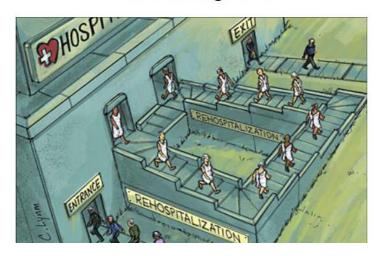


penKid in AHF





Need for Congestion and Perfusion assessment in AHF patients

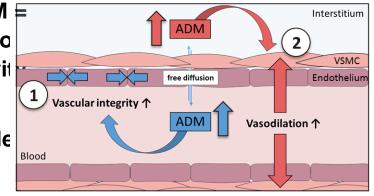

UNIVERSITY

Congestion and Rehospitalization

Heart Failure Admissions- The Revolving Door

Main reason for hospitalization for worsening HF is related to symptoms of congestion.

M. Gheorghiade et al. European Journal of Heart Failure (2010) 12, 423-433



Any Biomarker of Congestion?

Adrenomedullin (ADM)

Key regulator and Biomarker of vascular function & drug target for the causal treatment of vascular dysfunction

- Increase in <u>plasma</u> ADM Response of the body to support vascular integrit
- 2 Interstitial ADM acts on vascular smooth muscle cells (VSMC) and regulates vasodilation

Temmesfeld-Wollbrück et al. (2007) Thromb Haemost. 98(5):944-51. Hirata et al. (1996) J Clin Endocrinol Metab. 81(4):1449-53. Ishizaka et al. (1994) Biochem Biophys Res Commun. 200(1):642-6.

bio-ADM best reflects the degree of clinical congestion at baseline

Diagnosis

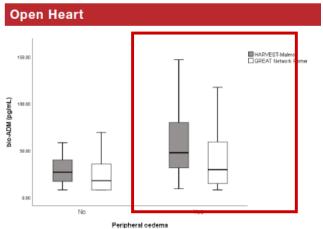
- Severity of clinical congestion at baseline:
- **OR = 1.76**, 95% CI (1.56-1.99)
- adjusted*: OR = 1.44, 95% CI (1.25-1.65)

* adjusted for BMI, serum albumin, total cholesterol, BNP, history of atrial fibrillation and past heart failure hospitalization

Mild/moderate vs. Severe congestion at baseline

	OR (95% CI)	AUC (95% CI)		
bio-ADM	1.76 (1.56-1.99)	0.66 (0.63-0.69)		
Weight	1.53 (1.36-1.72)	0.60 (0.57-0.63)		
BNP	1.21 (1.09-1.35)	0.55 (0.52-0.58)		
Blood urea nitrogen	1.12 (1.00-1.24)	0.55 (0.50-0.56)		
Creatinine	1.05 (0.95-1.17)	0.51 (0.48-0.54)		
Hemoglobin	1.00 (0.89-1.12)	0.50 (0.47-0.53)		
Serum Albumin	0.74 (0.66-0.83)	0.59 (0.56-0.62)		
Cholesterol	0.74 (0.66-0.83)	0.59 (0.56-0.62)		

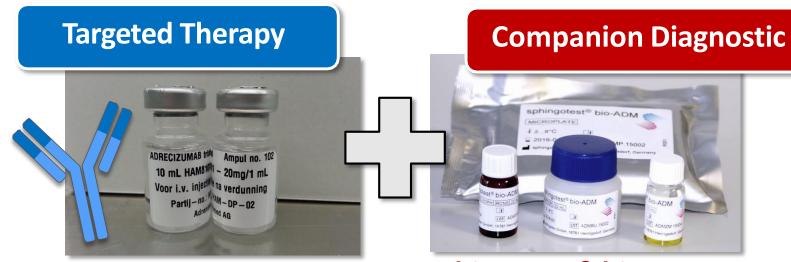
Kremer D et al., Eur J Heart Fail. 2018 Jun 22. doi: 10.1002/ejhf.1245. PROTECT Study: Massie et al. (2010) NEJM. 363(15):1419-28.



openheart Bioactive adrenomedullin, proenkephalin A and clinical outcomes in an acute heart failure setting

John Molvin,^{1,2} Amra Jujic,⁹,^{1,2} Silvia Navarin,^{3,4} Olle Melander,^{2,5} Giada Zoccoli,^{3,4} Oliver Hartmann,⁶ Andreas Bergmann,⁶ Joachim Struck,⁶ Erasmus Bachus,² Salvatore Di Somma,^{3,4} Martin Magnusson^{1,2}

Figure 1 Distribution of bio-ADM according to signs of peripheral oedema within each centre. HARVEST-Malmö n=301, 215 events (p<0.001), GREAT Network Rome n=208, 123 events (p=0.080). bio-ADM, bioactive adrenomedullin, HARVEST, HeArt and bRain failure inVESTigation trial.



	Univariable			Bivariable: BioADM			Bivariable: PenKid		
	OR	95% CI	P value	OR	95% CI	P value	OR	95% CI	P value
Age	1.04	0.99 to 1.09	0.067	1.54	1.03 to 2.31	0.037	2.16	1.49 to 3.13	<0.001
Sex	0.53	0.24 to 1.16	0.112	1.58	1.05 to 2.37	0.028	2.19	1.53 to 3.14	<0.001
Diabetes	0.85	0.37 to 1.92	0.689	1.52	1.01 to 2.28	0.045	2.23	1.56 to 3.19	<0.001
SBP	0.99	0.98 to 1.01	0.254	1.48	0.98 to 2.25	0.063	2.28	1.59 to 3.27	<0.001
ACE-i	0.60	0.26 to 1.36	0.217	1.49	0.99 to 2.23	0.056	2.24	1.56 to 3.21	<0.001
ARB	0.92	0.46 to 1.81	0.798	1.51	1.01 to 2.27	0.049	2.27	1.58 to 3.25	<0.001
Betablockers	0.20	0.09 to 0.46	<0.001	1.61	1.08 to 2.40	0.020	2.08	1.44 to 3.00	<0.001
Prior HF	0.54	0.25 to 1.19	0.127	1.63	1.09 to 2.46	0.018	2.22	1.56 to 3.15	<0.001
Creatinine	1.77	1.27 to 2.46	0.001	1.38	0.90 to 2.11	0.139	2.31	1.51 to 3.53	<0.001
BNP	1.28	0.85 to 1.92	0.235	1.42	0.93 to 2.15	0.105	2.29	1.56 to 3.35	<0.001
Smoking	0.43	0.10 to 1.84	0.255	1.47	0.97 to 2.21	0.067	2.25	1.57 to 3.23	<0.001
Prevalent AF	0.47	0.20 to 1.09	0.078	1.50	1.01 to 2.25	0.047	2.18	1.53 to 3.11	<0.001
Bio-ADM	1.50	1.00 to 2.26	0.051				2.19	1.52 to 3.15	<0.001

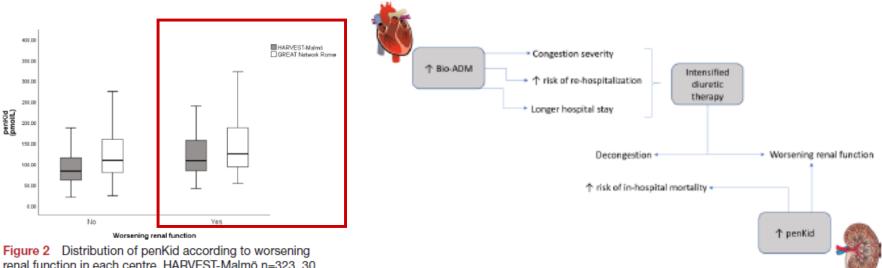
bio-ADM: Companion Dx for ADRECIZUMAB

ADRECIZUMAB

- Phase-II in Early Septic Shock
 & Acute Heart Failure
- Expected Market Entry: 2021

sphingotest[®] bio-ADM assay

- CE-marked IVD test for measurement of the bioactive target
- Patients will be stratified according to their bio-ADM admission level



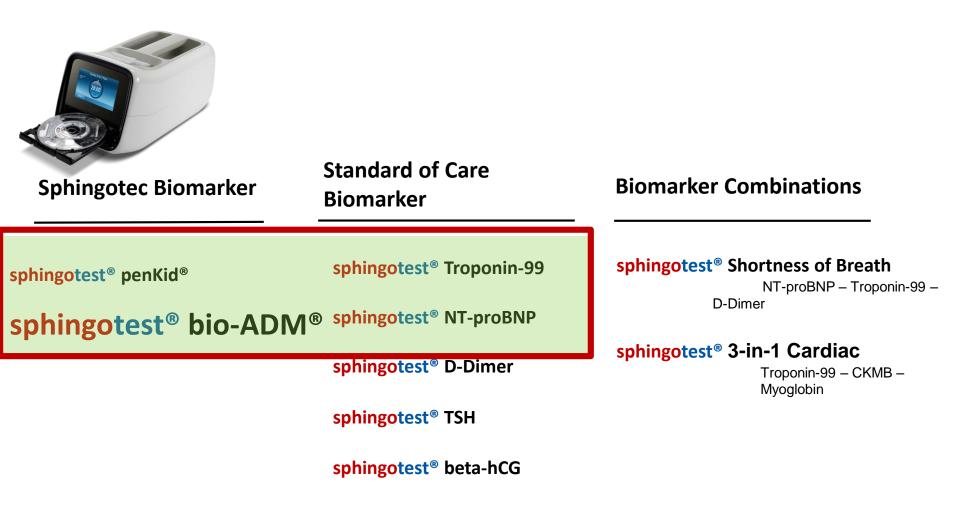
openheart Bioactive adrenomedullin, proenkephalin A and clinical outcomes in an acute heart failure setting

John Molvin,^{1,2} Amra Jujic,⁹ ^{1,2} Silvia Navarin,^{3,4} Olle Melander,^{2,5} Giada Zoccoli,^{3,4} Oliver Hartmann,⁶ Andreas Bergmann,⁶ Joachim Struck,⁶ Erasmus Bachus,² Salvatore Di Somma,^{3,4} Martin Magnusson^{1,2}

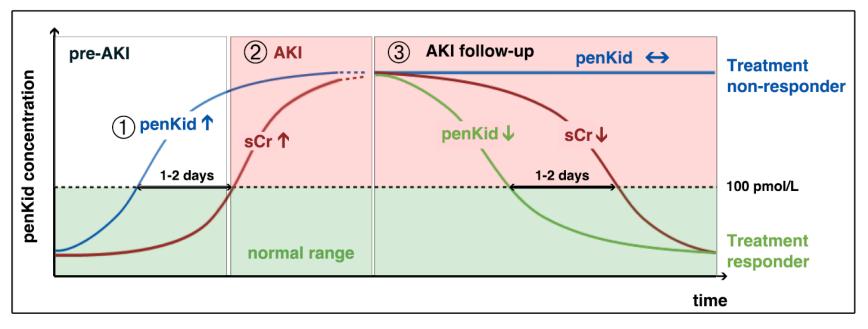
renal function in each centre. HARVEST-Malmö n=323, 30 events (p=0.003), GREAT Network Rome n=178, 37 events (p=0.050). PenKid, proenkephalin A 119–159HARVEST, HeArt and bRain failure inVESTigation trial.

Figure 3 The clinical use of Bioactive adrenomedullin (bio-ADM) and proenkephalin A 119–159 (penKid) for management of heart failure.

Molvin J, et al. Open Heart 2019;6:e001048. doi:10.1136/openhrt-2019-001048



Nexus IB 10Product Portfolio available 2019



penKid® tracking AKI in AHF patients

Relative Change

Relative changes in penKid® enables early assessment of worsening renal function

② Diagnosis

Independent of commorbidities or inflammation, penKid® is highly elevated in AKI patients

3 Monitoring

Dynamic penKid® level enables close monitoring of therapy success and kidney normalization

Editorial

Blood Purification

Blood Purif 2014;38:I–III DOI: 10.1159/000375470

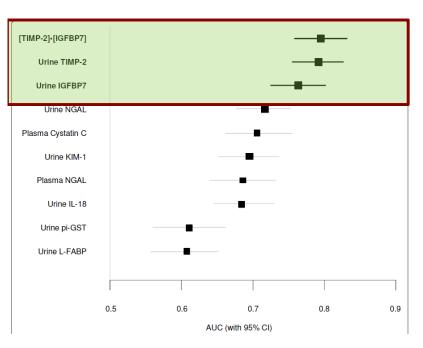
Published online: February 13, 2015

Cell Cycle Arrest Biomarkers: New Weapons for A New Battle

Claudio Ronco

Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), San Bortolo Hospital, Vicenza, Italy

Recently, the US Food and Drug Administration made an important step forward in the battle against AKI and its consequences. The FDA cleared the marketing of the NephroCheck Test (Astute Medical Inc., San Diego, USA), a rapid test for the quantitative measurement of the cell cycle arrest biomarkers Tissue Inhibitor of Metalloproteinase – 2 (TIMP2) and Insulin-Like Growth Factor Binding Protein – 7 (IGFBP7) [5]. The combination of the two biomarkers ([TIMP2]·[IGFBP7]) measured by the test seems to be highly predictive of which patients will develop moderate to severe AKI in the next 12–24 h.

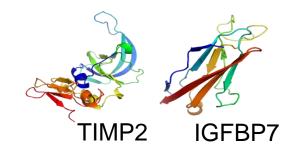


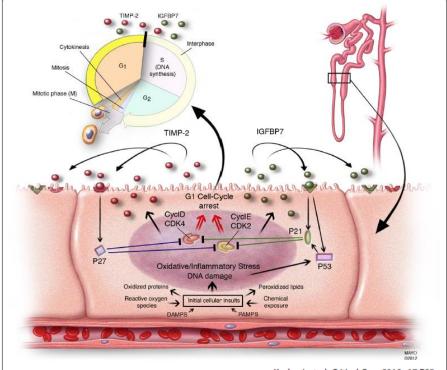
Open Access

RESEARCH

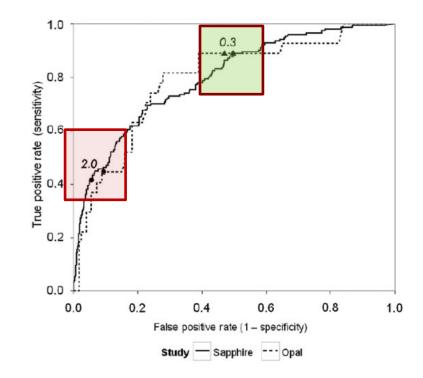
Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury

Kianoush Kashani¹, Ali Al-Khafaji², Thomas Ardiles³, Antonio Artigas⁴, Sean M Bagshaw⁵, Max Bell⁶, Azra Bihorac⁷, Robert Birkhahn⁸, Cynthia M Cely⁹, Lakhmir S Chawla¹⁰, Danielle L Davison¹⁰, Thorsten Feldkamp¹¹, Lui G Forni¹², Michelle Ng Gong¹³, Kyle J Gunnerson¹⁴, Michael Haase¹⁵, James Hackett¹⁶, Patrick M Honror¹⁷, Eric AJ Hoste¹⁸, Olivier Joannes-Boyau¹⁹, Michael Joannidis²⁰, Patrick Ki^{m21}, Jay L Koyner²², Daniel T Laskowitz²³, Matthew E Lissaue²⁴, Gernot Max²⁵, Peter A McCullough²⁶, Scott Mullaney²⁷, Marlies Ostermann⁸⁸, Thomas Rimmelé²⁶, Nathan I Shapiro³⁰, Andrew D Shaw³¹, Jing Shi³², Amy M Sprague³³, Jean-Louis Vincent³⁴, Christophe Vinsonneau³⁵, Ludwig Wagner²⁶, Michael G Walke³², R Gentry Wilkerson³⁷, Kai Zacharowski³⁸ and John A Kellum³⁹





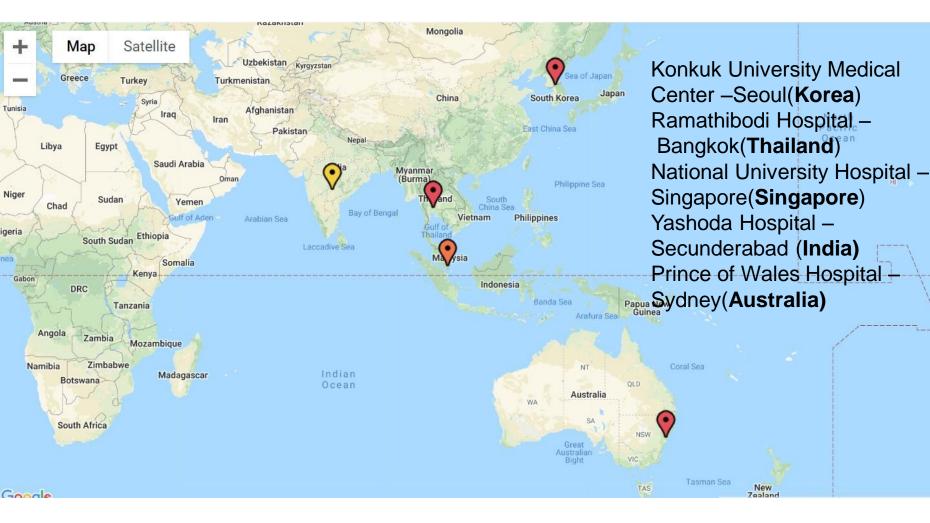
Kashani et al. Critical Care 2013, 17:R25 http://ccforum.com/content/17/1/R25


Nephrol Dial Transplant (2014) 29: 2054–2061 doi: 10.1093/ndt/gfu292 Advance Access publication 18 September 2014

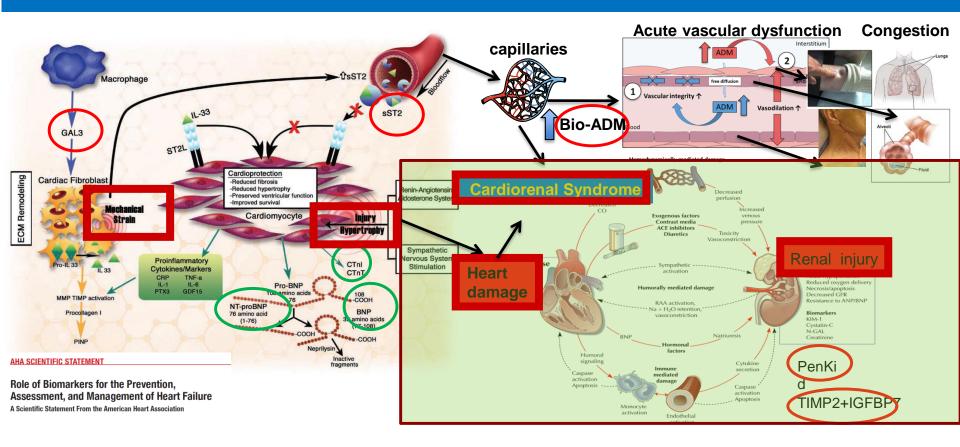
Original Articles

Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers

Eric A.J. Hoste¹, Peter A. McCullough^{2,3}, Kianoush Kashani⁴, Lakhmir S. Chawla^{5,6}, Michael Joannidis⁷, Andrew D. Shaw⁸, Thorsten Feldkamp^{9,10}, Denise L. Uettwiller-Geiger¹¹, Paul McCarthy¹², Jing Shi¹³, Michael G. Walker¹³, John A. Kellum¹⁴ on behalf of the Sapphire Investigators[†]

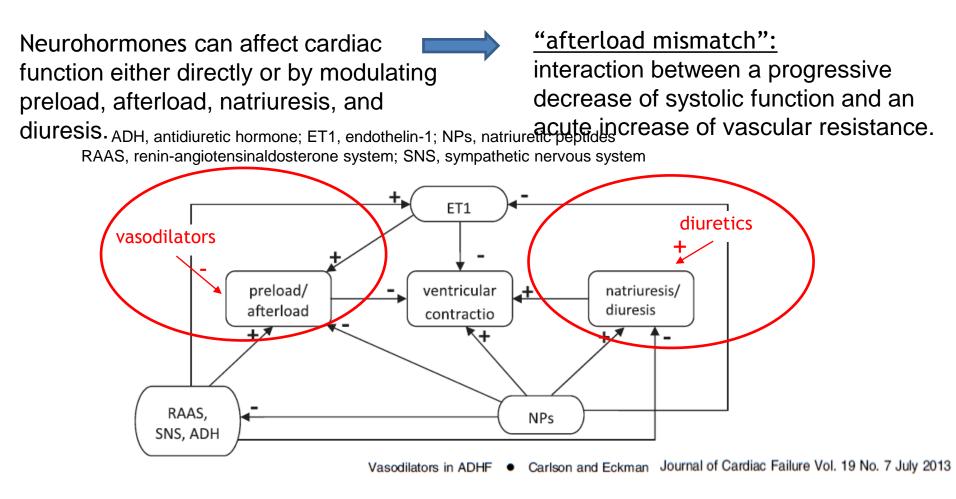


BRAVA Study : Participant Centers


SAPIENZA UNIVERSITÀ DI ROMA

Mechanisms and responses to injury in heart failure:role of heart and Kidney biomarkers

Circulation. 2017;135 (Modified)

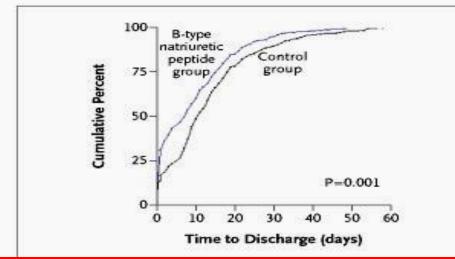


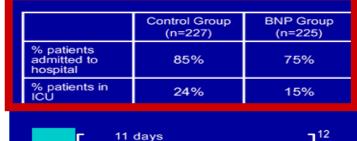
AHF: pathophysiology and treatment

Vena-Vena Ultrafiltration 24 hours monitoring in intensive Observation Unit for Cardiorenal Syndrome type I

The (True) Value of Laboratory Medicine

Laboratory medicine is often misquoted as having a role **in 70 percent of clinical decisions** – but how can we measure the true value, and more importantly, **how can we improve it**?





Cost-Effectiveness of NPs use at ED: The BASEL Study

Fabourable effects on appropriate rule out and hospital admissions and LOS

Muller C, et al. N Engl J Med. 2004;350:647-654.

DADID DND TECTINI

€1,545 Savings/Patient

Hindawi Disease Markers Volume 2018, Article ID 4597489, 1 page https://doi.org/10.1155/2018/4597489

Editorial **Biomarkers in Emergency Medicine**

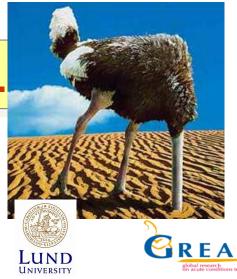
Patrizia Cardelli^(D),¹ Mina Hur^(D),² and Salvatore Di Somma³

¹Sapienza University of Rome, Rome, Italy ²Konkuk University, Seoul, Republic of Korea ³Facoltà di Medicina e Psicologia, Roma, Italy

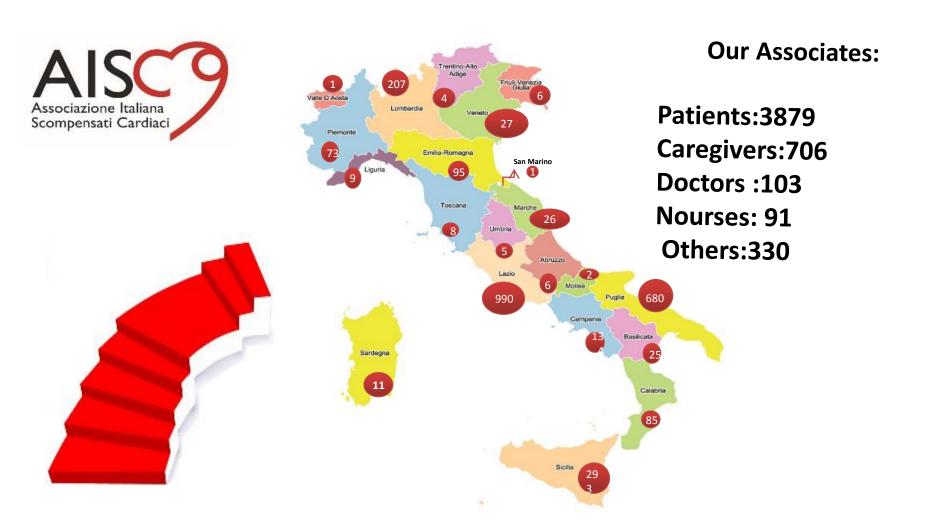
Researchers navigate the ocean of biomarkers searching for proper targets and optimal utilization of them. Emergency medicine builds up the front line to maximize the utility of clinically validated biomarkers and is the cutting edge field to test the applicability of promising biomarkers emerging from thorough translational researches. The role of biomarkers in clinical decision making would be of greater significance for identification, risk stratification, monitoring, and prognostication of the patients in the critical- and acute-care settings. No doubt basic research to explore novel biomarkers in relation to the pathogenesis is as important as its clinical counterpart. This special issue includes five selected research papers that cover a variety of biomarker- and disease-related topics.

There is still no substitute for a "Hands on" openended history and physical exam- all the while , demonstrating compassion and empathy

Biomarkers should be used wisely


- They should be used <u>as a tool **together**</u>
 with clinical experience;
- You need to know:
- clinical indications,
 cut-off ranges and limitations of the biomarker

A fool with a tool is still a fool...



AISC STRUCTURE MULTICULTURAL

• AIMS AND OBJECTIVES

• With the Final goal to Ameliorate relationship between clinicians and Patients with Heart Failure

1)Promote information on heart failure, raising awareness of the disease and ensure the best prevention; Perform an educational function aimed at developing the ability to recognize the disease and follow the correct care, to improve the quality of patient life;

- 2)Improve the goals of medical research also in light of the practical needs of patients;
- 3)Create a national referral network for patients, to ensure the possibility of sharing information and receiving support throughout the territory;
- 4)Bring the attention of institutions and public opinion to the pathology and patients, to improve prevention, protection and care interventions;

Encourage contact with patient associations at international level

Perform an educational function: Books,Website,Video,Traveling vehicle Meetings,

http://associazioneaisc.org/

THE MOBILE CLINIC: Different way of approach to Patients with Heart Failure

segreteria@associazioneaisc.org

http://associazioneaisc.org

